TestConX 2025

Signal Integrity

Signal Integrity and Power Integrity Test Hardware Design Requirements, Challenges for low voltages high performance SOC Noel Del Rio, Sean Young, Matt Lauderdale **NXP Semiconductor - Austin** Test**ConX** Mesa, Arizona • March 2–5, 2025

TestConX 2025

Signal Integrity

Contents

- Power Integrity Challenges of low voltage devices for multi-site Test load boards.
- Signal Integrity Impact of small pitch packages high performance SOC.
- Multi-IP provider on a single SOC.
- Noise floor management and sensitivity for Digital and Mixed-Signal devices.
- Recommendation, Conclusion.

Signal Integrity and Power Integrity Test Hardware Design Requirements, Challenges for low voltages high performance SOC

Signal Integrity

Critical details for low voltage SOC

- Supply voltage levels trending down to 0.76V, 0.60V....
- The 5.00 % of 0.76 V is 38.00 mV.
- The 5.00 % drop of 15.00 A supply is 2.50 mΩ. Single digit impedance for major IPs such as VDD-Core, DDR, Analog Block.

Signal Integrity and Power Integrity Test Hardware Design Requirements, Challenges for low voltages high performance SOC

Signal Integrity

Power delivery for low voltage SOC

- Power plane design, layout and geometries.
- Power plane design for multi-site load board.
- Power filter design, components, and placements.
- Power Connector specifications and precisions in time domain and frequency domain.

Signal Integrity and Power Integrity Test Hardware Design Requirements, Challenges for low voltages high performance SOC

Signal Integrity

Power Integrity challenges for low voltage SOC

Test Issues related to power distribution

- Site to site correlation on high current, high performance IPs (e.g., di/dt for Core, DDR, Analog Block).
- IP signal a noise to another IP.
- Cross-talk: Site signal a noise to another site.

Signal Integrity and Power Integrity Test Hardware Design Requirements, Challenges for low voltages high performance SOC

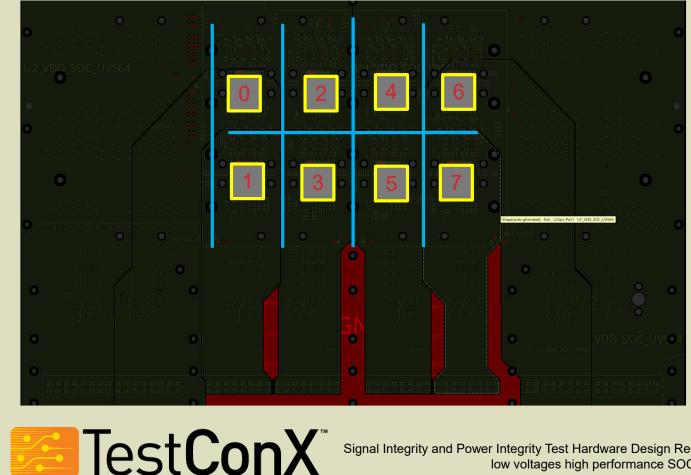
Signal Integrity

6

PCB Design Solutions for low voltage SOC

Signal Integrity and Power Integrity Test Hardware Design Requirements, Challenges for low voltages high performance SOC

TestConX Workshop


www.testconx.org

March 2-5, 2025

TestConX 2025

Signal Integrity

- **Critical Geometries** to ensure correlation between sites.
- **ATE Symmetric** ۰ instruments layout per associated sites.
- The entire power plane is used for a single DUT power, VDD.
- Additional layers for power distribution.

Signal Integrity and Power Integrity Test Hardware Design Requirements, Challenges for low voltages high performance SOC

Signal Integrity

Additional power layers for low voltage SOC

	L5/pn_Gnd28							
	L58pn_Pwr10							
	L59pn_Gnd29							
	L60pn_Pwr11							
	L61pn_Gnd30							
	L62pn_Pwr12							
	L63pn_Gnd31							
	L64pn_Pwr13							
	L65pn_Gnd32							
	L66sp_Inr20							
	L67pn_Gnd33							
	L68sp_Inr21							
	L69pn_Gnd34							
	L70sp_Inr22							
×	L71pn_Gnd35							
^	L72sp_Inr23							
	L73pn_Gnd36							
	L74sp_Inr24							
	L75pn_Gnd37							
	L76sp_Inr25							
	L77pn_Gnd38							
	L78sp_Inr26							
	L79pn_Gnd39							
	Bottom							
	Through All							
		nable	Inte		loct			
		mable	Taye	n se	iect	mod	e	

L22pn_Gnd11			
L23pn_Pwr1			\checkmark
L24pn_Gnd12			
L25pn_Pwr2			
L26pn_Gnd13			
L27pn_Pwr3			
L28pn_Gnd14			
L29pn_Pwr4			
L30pn_Gnd15			
L31pn_Pwr5			
L32pn_Gnd16			
L33pn_Pwr6			
L34pn_Gnd17			
L35sp_Inr11			
136nn Gnd18			

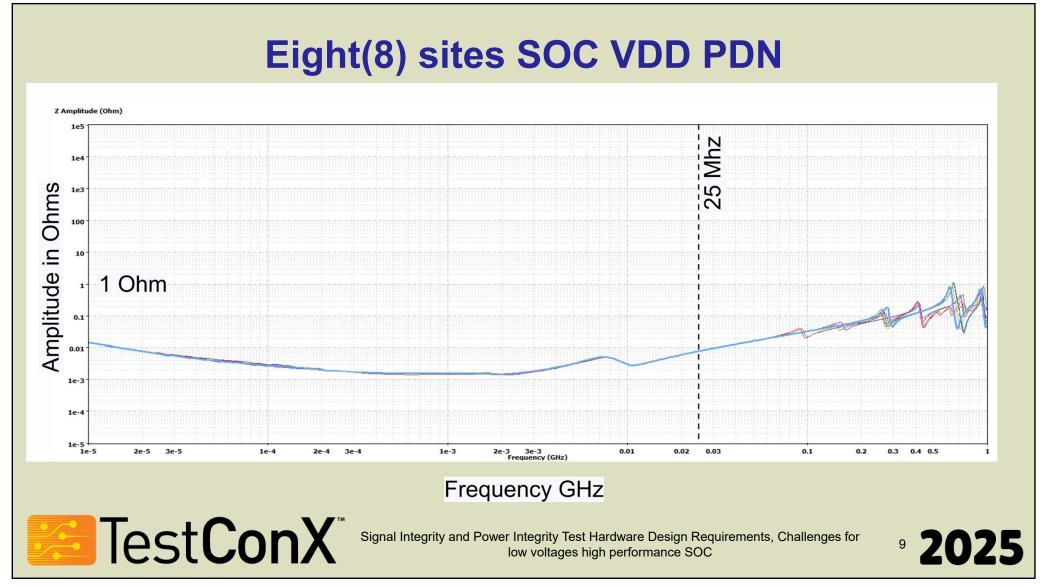
L53pn_Gnd26				
L54pn_Pwr8				
L55pn_Gnd27				
L56pn_Pwr9				
L57pn_Gnd28				
L58pn_Pwr10				
L59pn_Gnd29				
L60pn_Pwr11				
L61pn_Gnd30				
L62pn_Pwr12				
L63pn_Gnd31				
L64pn_Pwr13				
L65pn_Gnd32				

The need for more power plane layers

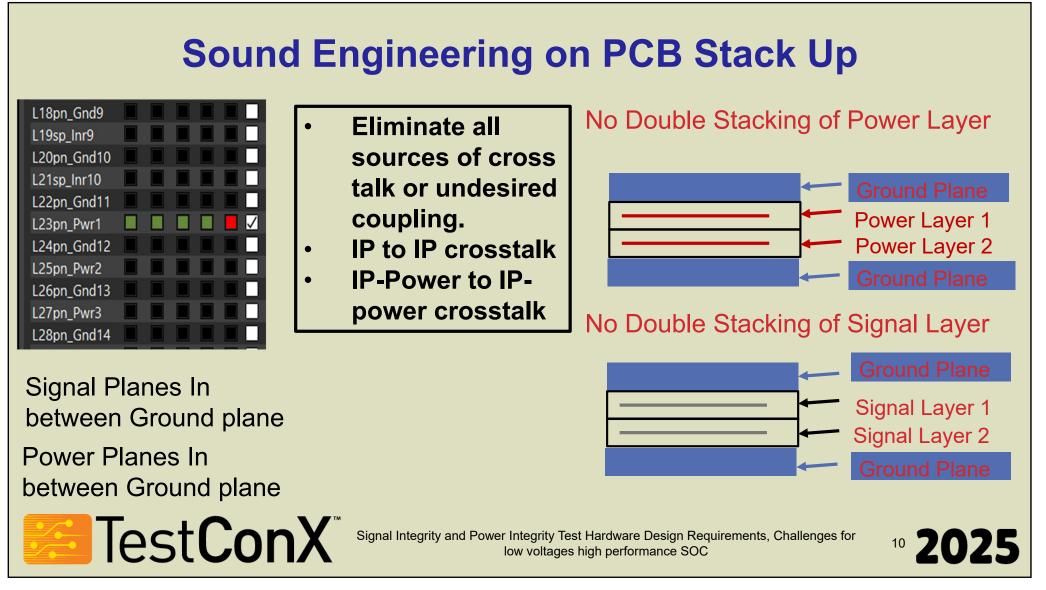
- Power delivery requires precise power plane design.
- Additional layer count is inevitable.
- Electrical, mechanical complexities associated with thick boards.

80+ layer PCB

Test**ConX**


Signal Integrity and Power Integrity Test Hardware Design Requirements, Challenges for low voltages high performance SOC

٠


Session 3 Presentation 1

Signal Integrity

TestConX 2025

Signal Integrity

Signal Integrity

11

Signal Integrity Sensitivity on small pitch and low voltage SOC

Signal Integrity and Power Integrity Test Hardware Design Requirements, Challenges for low voltages high performance SOC

TestConX Workshop

www.testconx.org

March 2-5, 2025

Signal Integrity

Intricacies of Small Pitch Packages, Multi-Ip Iow voltage high performance SOC

- Inductive physical circuits on transmission line segment interface is common. Focus on hardware integration is a must to avoid SI issue as a function of frequency.
 - Small board pads.
 - Small diameter socket pins.
- Physical 3D modeling of hardware integration is very critical.
- Board Geometries, Structures, over all thickness is predicated by package pitch.

Signal Integrity and Power Integrity Test Hardware Design Requirements, Challenges for low voltages high performance SOC

Signal Integrity

Intricacies of Small Pitch Packages, Multi-Ip Iow voltage high performance SOC

- IP specific Impedance (e.g. Differential Impedance-> PCIE=85 Ω, DDR=80 Ω, USB=90 Ω, STD I/O 100 Ω).
 - Standard Single Impedance Socket.
 - Coaxial Single Impedance Socket.
 - Coaxial Multi-Impedance Socket.
- Type of Pin, & Pin-Tip Design.
- DUT Grid surface design, structure becomes complicated as a function of socket technology.

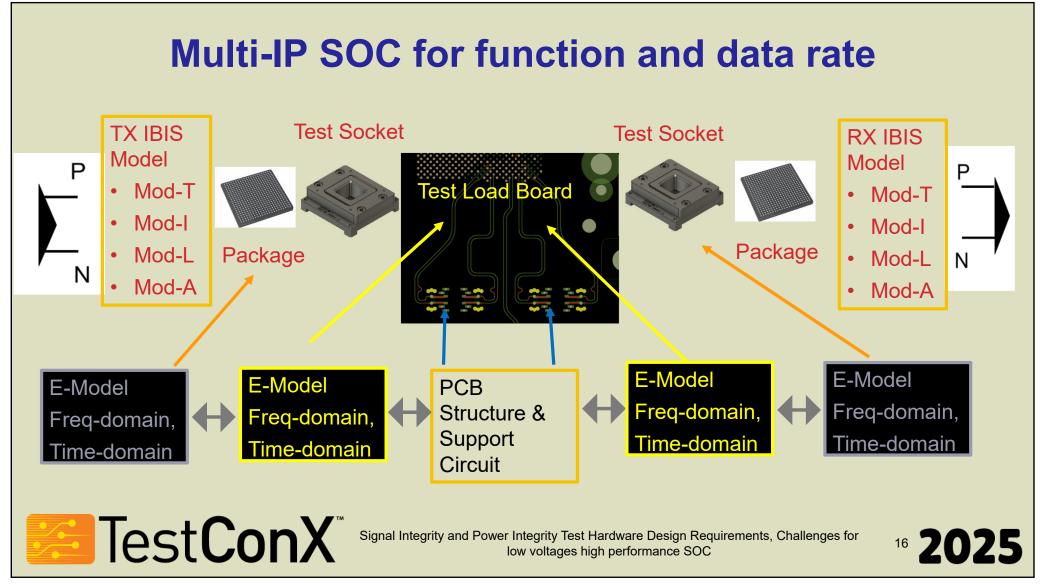
Signal Integrity and Power Integrity Test Hardware Design Requirements, Challenges for low voltages high performance SOC

Signal Integrity

Multi-IP on small pitch and low voltage SOC

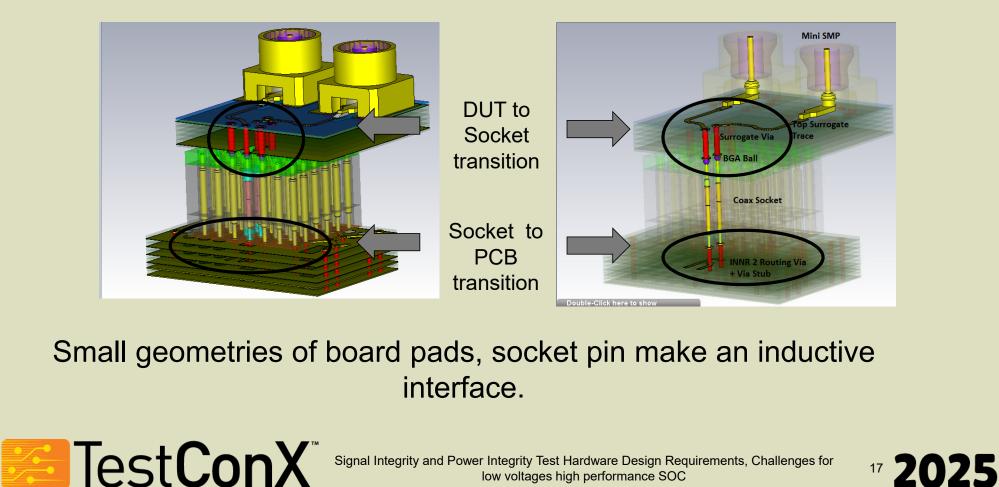
Signal Integrity and Power Integrity Test Hardware Design Requirements, Challenges for low voltages high performance SOC

14


TestConX 2025

Signal Integrity

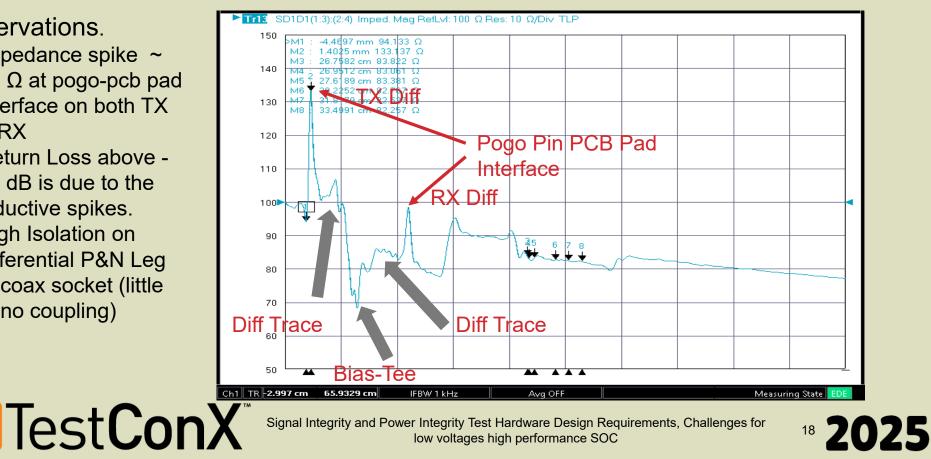
		IP specific l	npedai	nce	
IP Type	Model	Impedance (Diff) (Specifications)	Data Rate	Modeled, Simulated best results Impedance range	
PCIE	Т	85 Ω	16 Gbps	85 Ω to 90 Ω	
DDR	Т	80 Ω(40 Ω SE)	8 Gbps	90 Ω to 100 Ω	
Ethernet	I/A	85 Ω 100 Ω	16 Gbps	85 Ω to 90 Ω	
PCIE	I/A	85 Ω	10,16, 2.5 Gbps	85 Ω to 90 Ω	
USB3	Ι	90 Ω	10 Gbps	90 Ω	
DDR	I/T/A	80 Ω (40 Ω SE)	4 Gbps	90 Ω to 100 Ω	
PCIE	L/A	100 Ω 85 Ω	28,32,45 Gbps	85 Ω to 100 Ω	
TestConX [™] Signal Integrity and Power Integrity Test Hardware Design Requirements, Challenges for low voltages high performance SOC 15					


Session 3 Presentation 1

Signal Integrity

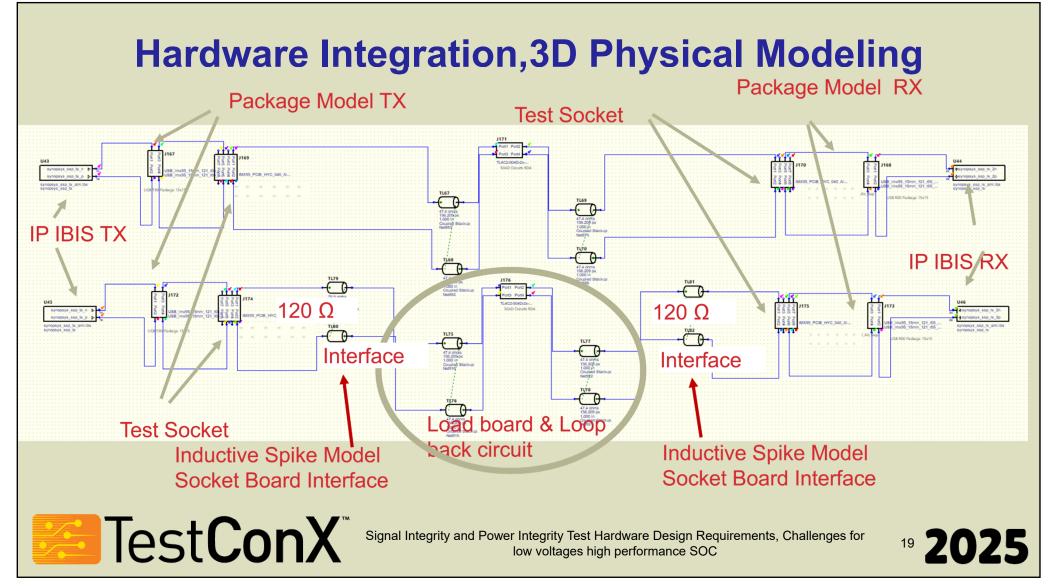
Signal Integrity

Hardware Integration, 3D Physical Modeling



Signal Integrity

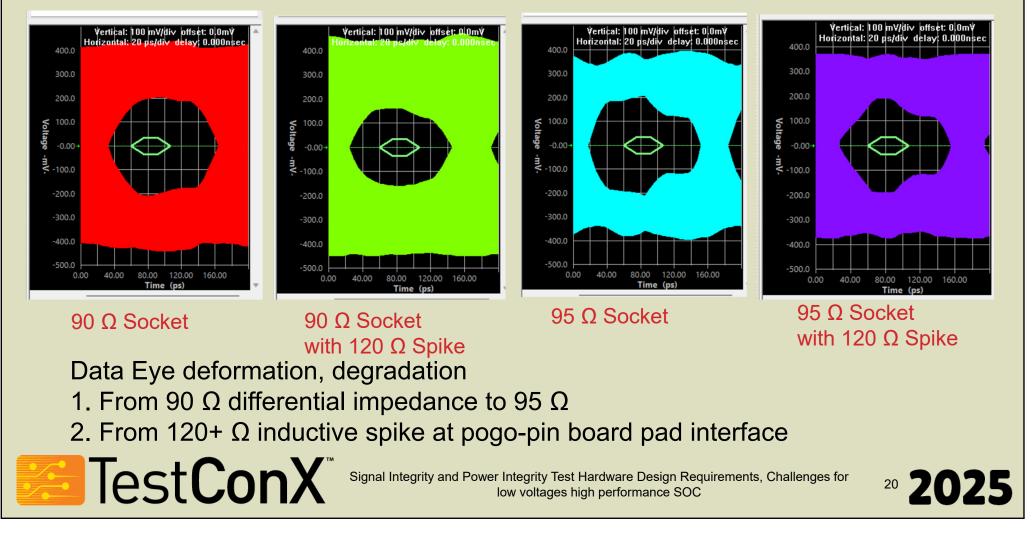
Hardware Integration, 3D Physical Modeling


Observations.

- 1. Impedance spike ~ 33 Ω at pogo-pcb pad interface on both TX & RX
- 2. Return Loss above -10 dB is due to the inductive spikes.
- 3. High Isolation on differential P&N Leg of coax socket (little to no coupling)

Session 3 Presentation 1

Signal Integrity

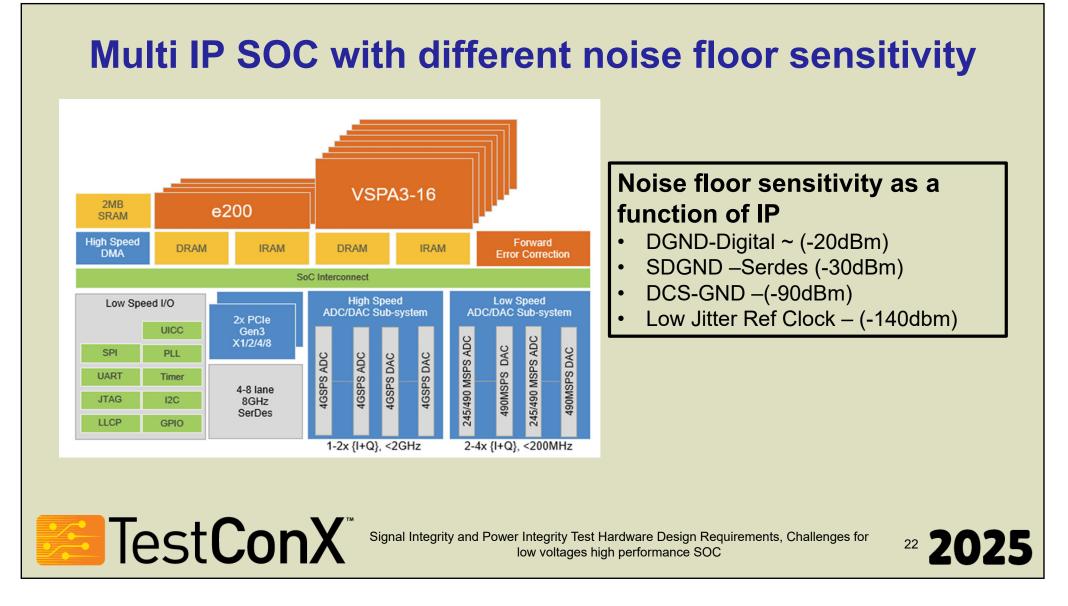

TestConX Workshop

www.testconx.org

March 2-5, 2025

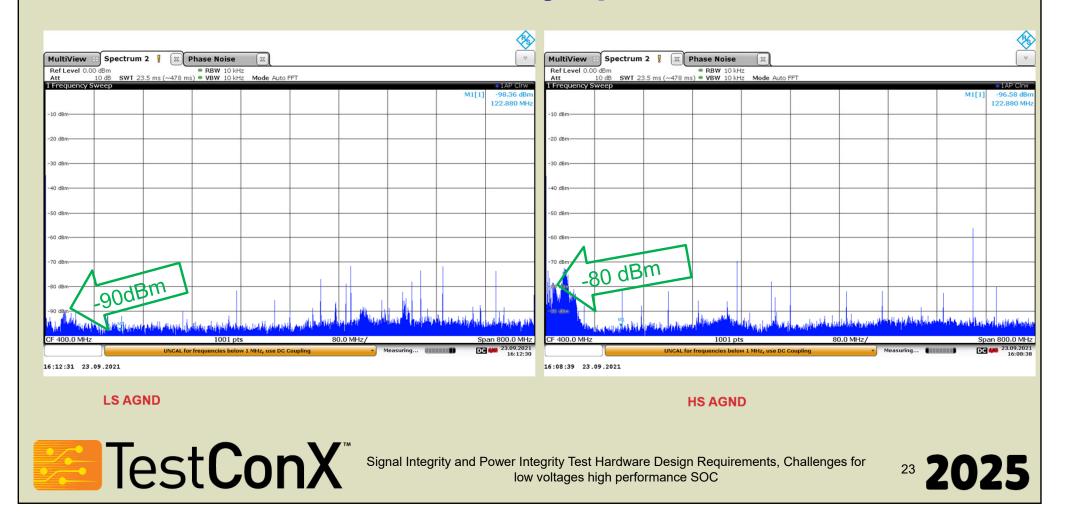
Signal Integrity

Hardware Integration, 3D Physical Modeling


Signal Integrity

Noise Floor Sensitivity of Multi-Ip and low voltage SOC

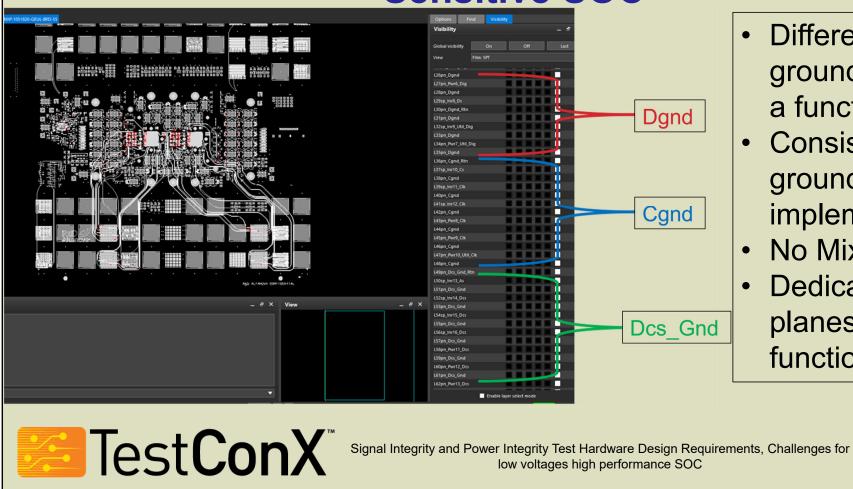
Signal Integrity and Power Integrity Test Hardware Design Requirements, Challenges for low voltages high performance SOC


21

Signal Integrity

Signal Integrity

Noise Floor Sensitivity specific to each IP


Signal Integrity

Noise Floor Sensitivity specific to each IP & Associated ATE Instruments

External Clock 122.88 MHz Frequency Surger Phase Noise = 8.199 Femto Seconds	Ref Level 0.00 dbm 10 db SWI 23.5 ms (~478) Fractuary SWI 23.5 ms (~478) 10 dbm 122.880 MHz
20 dem External PLL GENERATED CLOCK 30 dem 1. 122.88 Mhz 40 dem 2. Format Differential 50 dem 3. Phase Noise = 81.991 femto seconds 60 dem 4. Integration Range = 10 KHz to 20 MHz 60 dem 90 dem	-20 dbm ATE GENERATED CLOCK -30 dbm 1. 122.88 Mhz -40 dbm 2. Format Differential -40 dbm 3. Phase Noise = 2.071 pico seconds -50 dbm 4. Integration Range = 10 KHz to 20 MHz -60 dbm
F 400.0 MHz 1001 pts 80.0 MHz/ Span 800.0 MHz/	CF 400.0 MHz 1001 pts 80.0 MHz/ Span 800.0 MHz UNCAL for frequencies below 1 MHz, use DC Coupling Measuring Image: Comparison of the compar
TestConX [™] Signal Integrity and Power In	ntegrity Test Hardware Design Requirements, Challenges for w voltages high performance SOC

Signal Integrity

Power, Ground Management for Noise Floor Sensitive SOC

- Different power, ground domain as a function of IP.
- Consistency in ground, domain implementation.
- No Mixed-ground.
- **Dedicated Power** planes as a function of IP.

²⁵ **2025**

Solutions, Mitigation, future questions

Signal Integrity and Power Integrity Test Hardware Design Requirements, Challenges for low voltages high performance SOC

26

Signal Integrity

Low Voltage High Performance SOC test hardware implementation

- High Layer count 80 Layers +, Thick PCB 300 mils +.
- Connector, socket impedance-resistance specifications will be challenged to meet single digit parameters.
- Design NRE is considerable addition to cost.
- Hardware 3D, Physical Modeling is more critical than ever. Transmission Line-segment integration is a must.
- Dedicated Power, Ground, Domain management is key to meet SI, and Noise floor requirements (Analog).
- Mechanical (50%) and Electrical (50%) aspect of the Design.

Signal Integrity and Power Integrity Test Hardware Design Requirements, Challenges for low voltages high performance SOC

Signal Integrity

Credits and Recognition

- NXP Test Socket team (Riley Horner, Sean Young, Matthew Lauderdale)
- Hardware Development Partners
- Henry Lai, Jacob Neely

Signal Integrity and Power Integrity Test Hardware Design Requirements, Challenges for low voltages high performance SOC

Presentation / Copyright Notice

The presentations in this publication comprise the pre-workshop Proceedings of the 2025 TestConX workshop. They reflect the authors' opinions and are reproduced here as they are planned to be presented at the 2025 TestConX workshop. Updates from this version of the papers may occur in the version that is actually presented at the TestConX workshop. The inclusion of the papers in this publication does not constitute an endorsement by TestConX or the sponsors.

There is NO copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author/s or their companies.

The TestConX logo and 'TestConX' are trademarks of TestConX.

