Contact Technology

ADVANCED CO₂ SPRAY TECHNOLOGIES AND THEIR EFFECTIVENESS FOR IC SOCKET CLEANING APPLICATIONS

Nelson W. Sorbo Cool Clean Technologies LLC

Mesa, Arizona • March 2–5, 2025

TestConX Workshop

www.testconx.org

March 2-5, 2025

Contact Technology

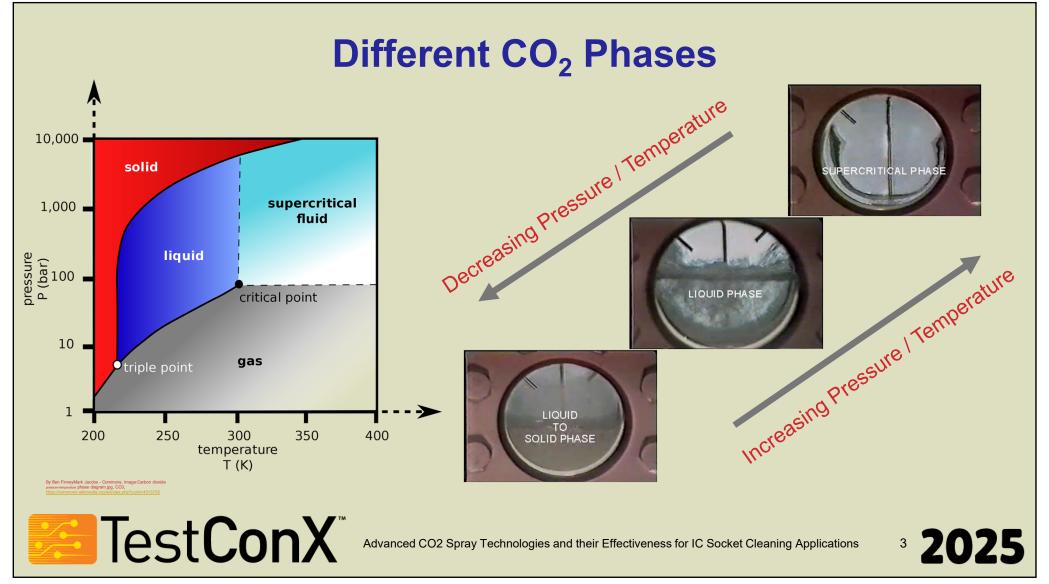
Introduction

Background

- CO₂ spray is utilized for a variety of cleaning challenges in many industries.
- Key spray characteristics:
 - Particle size distribution
 - Particle momentum
 - Spray temperature
 - Spray chemistry modification
- Nozzle configurations can be used to achieve the spray characteristics.

Presentation Outline

- CO₂ spray technology
 - CO₂ spray physics
 - How does CO₂ spray clean?
- CO₂ spray nozzles
- CO₂ spray cleaning applications
 - Electronic circuit cards
 - Optical sensor cleaning
 - Integrated circuit (IC) socket cleaning
- Operating cost estimate
- Summary



Advanced CO2 Spray Technologies and their Effectiveness for IC Socket Cleaning Applications

TestConX 2025

Contact Technology

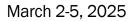
www.testconx.org

March 2-5, 2025

Contact Technology

2025

TestConX 2025

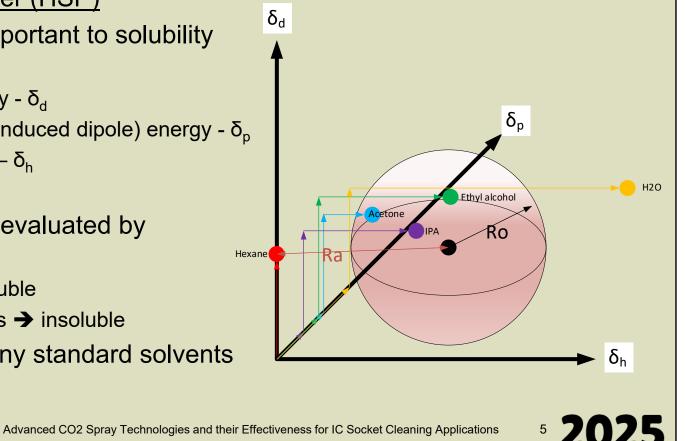

Solid CO₂ Particle Characteristics

- Impact Phenomenon
 - Ablation and phase change (solid \rightarrow gas, solid \rightarrow liquid \rightarrow gas)
- Co-Solvency
 - Modified with liquids, solids, vapor-phase additives
- Density
 - 1.6 g/cm3
- Hardness
 - <2 Hm (ex: 1 talc, 2.5 fingernail, 3 calcite, 5.5 glass, 7 quartz, 9 aluminum oxide).
- Particle Size
 - < 0.5 microns to > 500 microns, range adjustable (coarse/fine)
- Impact Stress
 - up to 130 Mpa (18,850 psi), pressure/particle size/distance dependent

www.testconx.org

TestconX^{TT} Advanced CO2 Spray Technologies and their Effectiveness for IC Socket Cleaning Applications

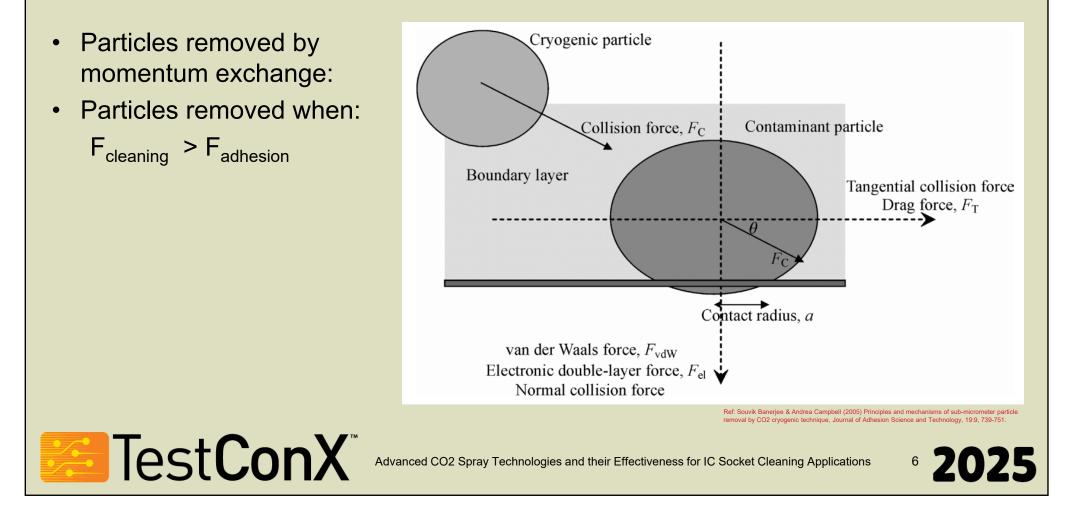
Contact Technology


Solubility Characteristics of Liquid CO₂ (LCO₂)

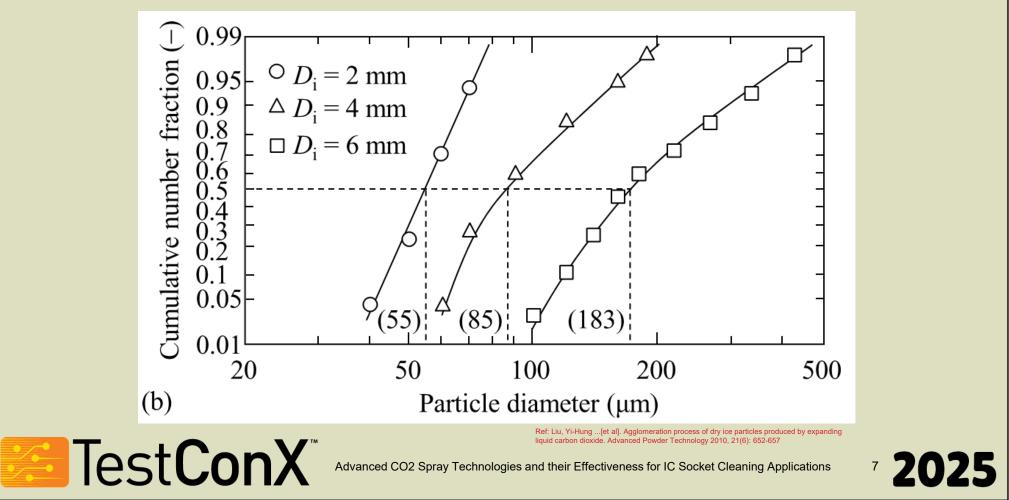
Hansen's Solubility Parameter (HSP)

- Combines three forces important to solubility evaluation:
 - Dispersive/non-polar energy δ_d
 - Polar (dipole-dipole/dipole-induced dipole) energy δ_p
 - Hydrogen Bonding energy δ_h
 - Total HSP
- Solvent / Solute solubility evaluated by comparing relative HSPs
 - 'Like / Similar' HSPs → soluble

Test**ConX**®


- 'Un-Like / Dis-Similar' HSPs → insoluble
- Similar HSP values to many standard solvents

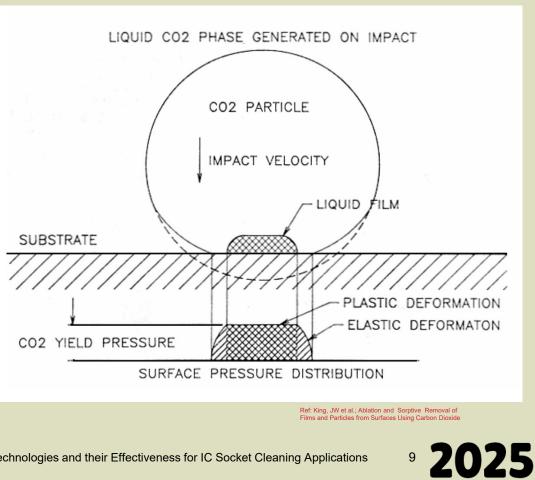
TestConX 2025


Contact Technology

Contact Technology

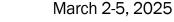
TestConX 2025

Contact Technology



TestConX 2025

Contact Technology


Removing Non-Particulate Organic Residues

- Non-Particulate Organic Residues:
 - Oils
 - Thin films
 - Fingerprints
- Residues solubilized by chemistry: •
 - CO₂ particles change upon impact
 - Solid -> Liquid -> Gas
 - Liquid CO₂
 - "Hexane-Like" chemistry:
 - HSP: 9 –18 MPa^{0.5}

Advanced CO2 Spray Technologies and their Effectiveness for IC Socket Cleaning Applications

TestConX 2025

Contact Technology

TestConX Workshop

www.testconx.org

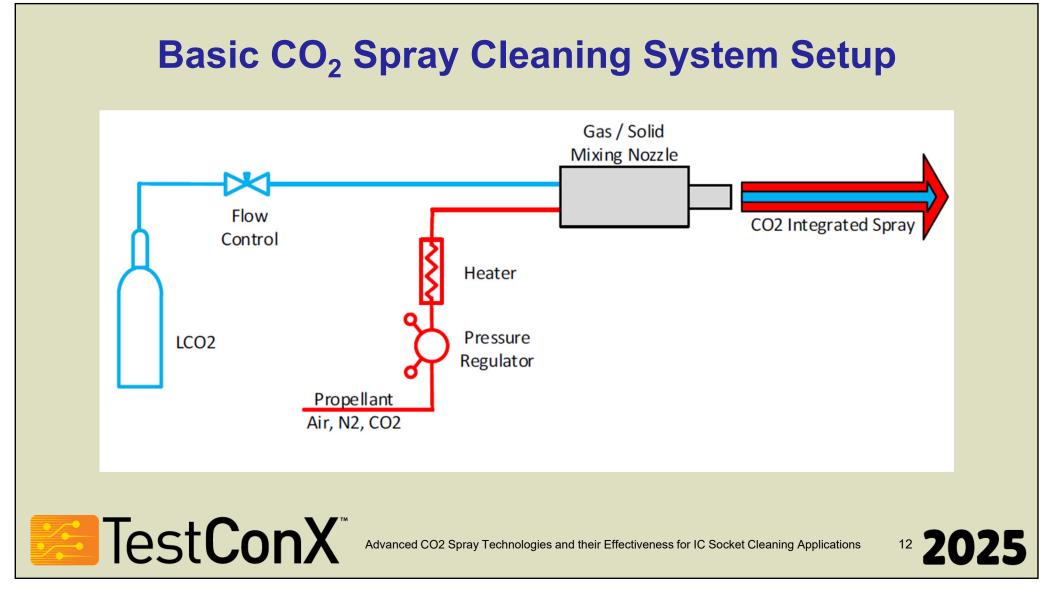
March 2-5, 2025

Contact Technology

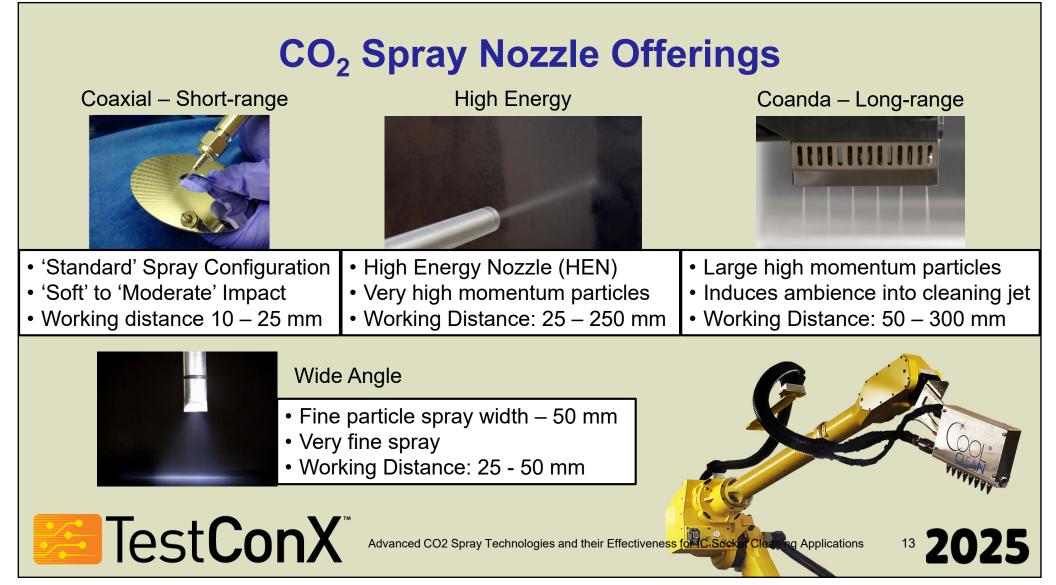
Solvent – Solute Solubility

- Occurs when solvent solute are similar
 - 'Like dissolves like'
- Strategy for 'chemical' cleaning
 - Match solubilities of solvent to contaminant.
- Need the chemistry of the contaminant

	СО2 (Т,Р)	δ _d Dispersion	δ _p Polar	δ _h Hydrogen bonding	δ _τ Total
LCO2 generated from impact	CO2 - TP @ 0.41 Mpa, -56C	16.6	5.4	6.7	18.7 🖌
from CO2 particles	CO2 - Sat @ 1.1 Mpa, -40C	15.6	5.2	6.3	17.6
	CO2 - Sat @ 2 Mpa, -20C	14.1	5.0	5.9	16.1
	CO2 - Sat @ 3.5 Mpa, 0C	12.3	4.7	5.5	14.3
	CO2 - C.L. @ 5 Mpa, 0C	12.6	4.8	5.5	14.5
	CO2 - Sat @ 4 Mpa, 6C	11.7	4.6	5.3	13.6
	CO2 - Sat @ 4.5 Mpa, 11C	11.1	4.5	5.2	13.1
	CO2 - Sat @ 5 Mpa, 14C	10.6	4.5	5.0	12.6
	CO2 - Sat @ 5.5 Mpa, 18C	10.0	4.4	4.9	12.0
	CO2 - Sat @ 6 Mpa, 22C	9.4	4.2	4.8	11.4
	CO2 - C.L. @ 6.5 MPA, 0C	12.8	4.8	5.5	14.7
	CO2 - S.C. @ 20.6 Mpa, 60C	9.1	4.2	4.5	11.0
	CO2 - S.C. @ 20.9 Mpa, 50C	10.1	4.4	4.7	12.0
	ConY	тм	nced CO	2 Spray T	echnolog


Saturated fatty acids					Unsaturated fatty acids						
Carbon number	δ_{d}	$\delta_{\rm p}$	$\delta_{\mathbf{h}}$	δ_{t}	Carbon number	δ_{d}	$\delta_{\rm p}$	$\delta_{\mathbf{h}}$	δ_{t}		
4:0	16.0	6.5	12.9	21.6	16:1	16.5	3.4	6.4	18.0		
5:0	16.0	6.0	11.9	20.8	16:3	17.1	3.2	7.2	18.8		
6:0	16.1	5.5	11.1	20.3	18:1	16.5	3.1	5.7	17.7		
7:0	16.1	5.2	10.3	19.8	18:2	16.8	3.1	6.2	18.2		
8:0	16.1	5.1	9.5	19.4	18:3	17.0	3.2	6.5	18.5		
9:0	16.2	4.4	8.7	18.9	18:4	17.3	2.9	6.8	18.8		
10:0	16.2	4.2	8.3	18.7	20:1	16.6	2.6	5.3	17.6		
11:0	16.2	4.1	70	18.5	20:2	16.8	2.6	5.7	17.9		
12:0	16.2		7.4	18.3	20:3	17.0	3.2	6.5	18.5		
13:0		3.6	6.8	18.0	20:4	17.2	2.8	6.5	18.6		
14:0	16.3	3.4	6.6	17.9	20:5	17.4	2.9	6.7	18.9		
15	16.3	3.3	6.3	17.8	21:5	17.4	2.6	6.3	18.7		
16:0	16.3	3.4	6.0	17.7	22:1	16.5	2.7	4.8	17.4		
17:0	16.3	3.0	5.6	17.5	22:4	17.2	2.4	6.0	18.4		
18:0	16.3	3.3	5.5	17.5	22:5	17.4	2.5	6.2	18.6		
19:0	16.3	2.8	5.2	17.3	22:6	17.6	2.5	6.6	19.0		
20:0	16.3	2.9	5.0	17.3	24:1	16.5	2.3	4.5	17.3		
21:0	16.3	2.6	4.7	17.2	24:4	17.1	2.4	5.5	18.1		
22:0	16.3	2.5	4.6	17.1	24:6	17.5	2.3	6.0	18.6		
23:0	16.3	2.5	4.5	17.1	Hydroxy fatty acids	3					
24:0	16.2	2.6	4.3	17.0	18:0 12OH	16.4	4.5	8.6	19.1		
25:0	16.3	2.3	4.0	16.9							

Ref: Anaid De La Peña-Gil & Jorge F. Toro-Vazquez & Michael A. Rogers (2016); Simplifying Hansen Solubility Parameters for Complex Edible Fats and Oils; Food Biophysics DOI 10.1007/s11483-016-9440-5


Advanced CO2 Spray Technologies and their Effectiveness for IC Socket Cleaning Applications

Contact Technology

Contact Technology

Contact Technology

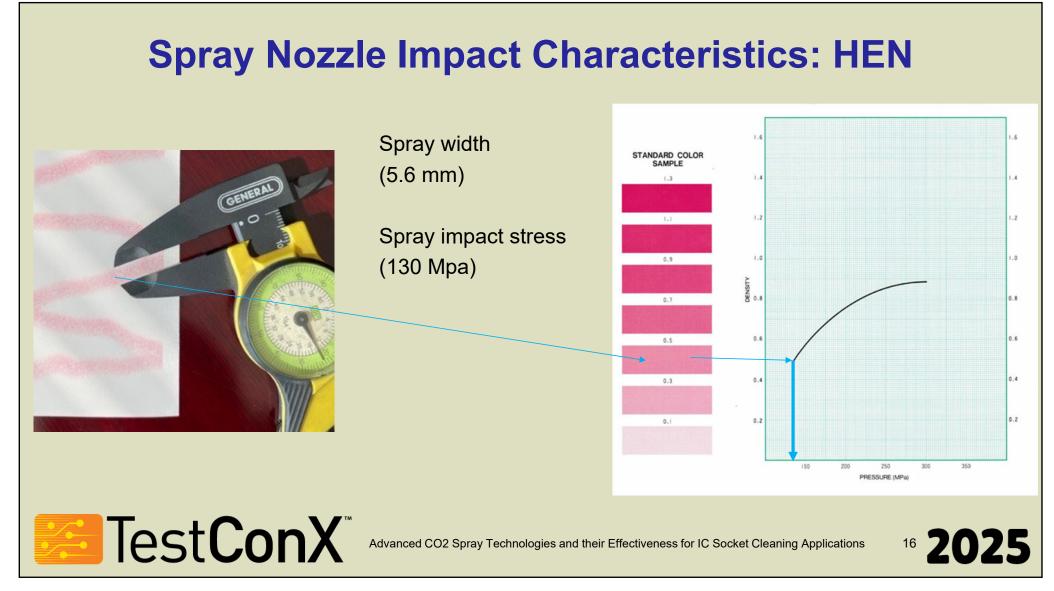
Identify CO₂ Spray Pattern / Impact Energy

- Two methods used to • assess effectiveness of spray for a given application.
 - Aluminum Foil Test
 - Pebbling method used a lot in ultrasonic cleaning
 - Fuji-Film Pressure Paper
- Both methods are effective • to determine:
 - Size of the spray pattern
 - Energy available for cleaning

Contact Technology

Pressure Paper Spray Nozzle Impact

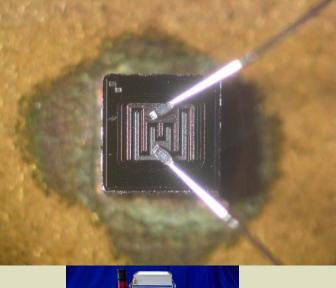
Coanda



	Measurable pressure range [MPa] 1MPa≒10.2kgf/cm²									
Types	0.006	0.05	0.2	0.5 0.	6	2.5	10	50	130	300
Ultra Extreme Low Pressure (5LW)										
Extreme Low Pressure (4LW)										
Ultra Super Low Pressure (LLLW)										
Super Low Pressure (LLW)										
Low Pressure (LW)										
Medium Pressure (MW)										
Medium Pressure (MS)										
High Pressure (HS)										
Super High Pressure (HHS)										

Advanced CO2 Spray Technologies and their Effectiveness for IC Socket Cleaning Applications

Contact Technology


Contact Technology

TestConX 2025

Automated In-Line Circuit Card Cleaning System

• Requirement:

- Achieve equivalent or better cleaning method electronic circuit card pockets
- No damage to fine wires
- Cleaning system must accept customer specified feed trays
- Previous cleaning methods: IPA/Q-tip, tape cleaning

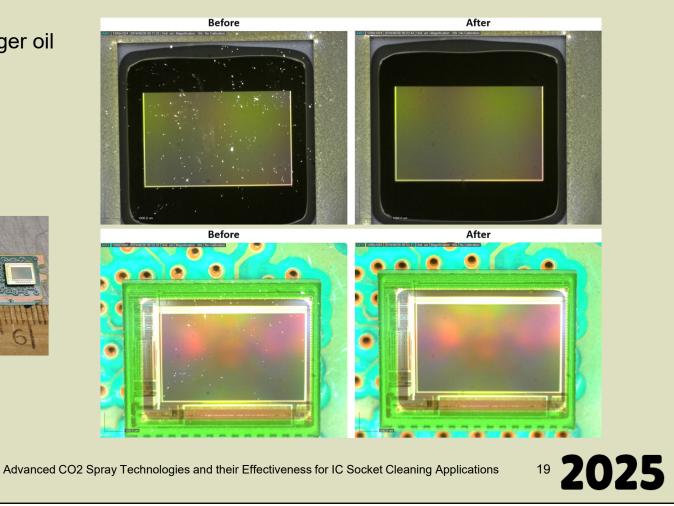
Advanced CO2 Spray Technologies and their Effectiveness for IC Socket Cleaning Applications

Contact Technology

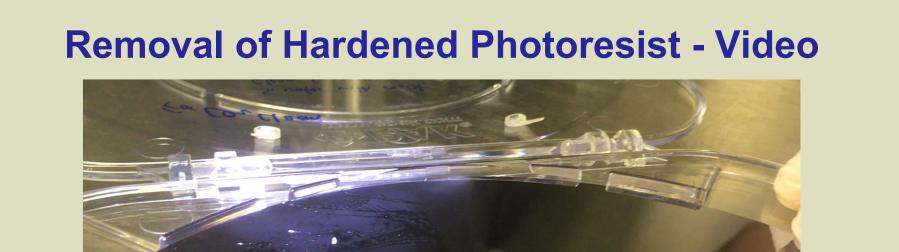
Cell Phone Board Cleaning System

- Cleaning Challenge:
 - Remove contamination from cell phone circuit board:
 - Water Residue, Salts, Debris
- Solution:
 - Automated CO₂ Spray Cleaning system
 - Auto Feed System
 - Four (4) HEN Nozzles
 - 1000 boards cleaned per week

Advanced CO2 Spray Technologies and their Effectiveness for IC Socket Cleaning Applications

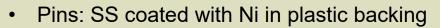

Contact Technology

Cleaning Printed Circuit Board (PCB) with Optical Sensor


- Objective: remove dust and finger oil
- Solution: HEN CO₂ spray
- Cleaning time: 10 seconds
- Photo Magnification: 60x

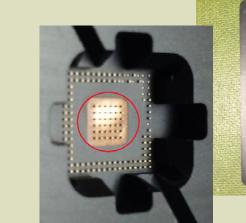
Test**ConX**®

Contact Technology


Contact Technology

CO₂ Spray Cleaning of IC Test Sockets

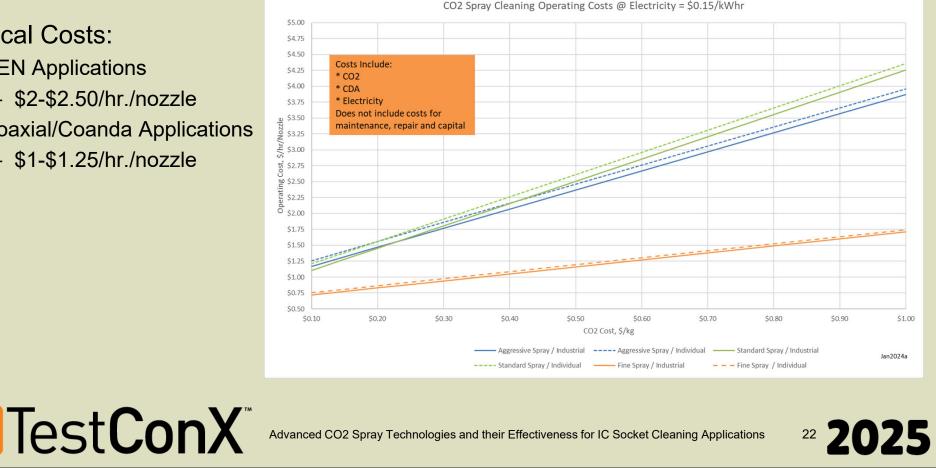
Before



- Diameter: 0.5 -1 mm / Spacing 1 2 mm
- Nozzle: HEN
- Optics: Keyence Digital Microscope
 VHX-5000 @ 200x

Test**ConX**®

Advanced CO2 Spray Technologies and their Effectiveness for IC Socket Cleaning Applications


TestConX 2025

Contact Technology

CO₂ Spray Technology Cost of Operation

Typical Costs:

- **HEN Applications** ٠
 - \$2-\$2.50/hr./nozzle
- Coaxial/Coanda Applications ٠
 - \$1-\$1.25/hr./nozzle

Presentation / Copyright Notice

The presentations in this publication comprise the pre-workshop Proceedings of the 2025 TestConX workshop. They reflect the authors' opinions and are reproduced here as they are planned to be presented at the 2025 TestConX workshop. Updates from this version of the papers may occur in the version that is actually presented at the TestConX workshop. The inclusion of the papers in this publication does not constitute an endorsement by TestConX or the sponsors.

There is NO copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author/s or their companies.

The TestConX logo and 'TestConX' are trademarks of TestConX.

