TestConX^{**}

Archive

DoubleTree by Hilton Mesa, Arizona March 3-6, 2024

© 2024 TestConX- Image: iStock-1455326382 siep bueneker

Chiplets & mmWave

High Performance Compute Test Trends in The Chiplet Era

Bob Bartlett Advantest Corporation

Mesa, Arizona • March 3-6, 2024

TestConX Workshop

www.testconx.org

March 3-6, 2024

ADVANTEST

TestConX 2024

Chiplets & mmWave

Agenda

- High Performance Compute (HPC) Device Testing Today
- Evolution to Multi-Die HPC
- Multi-Die Design Flows
- Test Data Volume
- TeraVector Multi-Core Conversion
- Replay Design to Test
- Paradigm Shifts in ATE
- Protocols in Semiconductor Test
- UCle Overview and ATE Access
- Power Integrity (PI) High Power Simulation
- Fixture Protection Strategies
- Wafer Sort Power Management
- Package HIR
- Summary

High Performance Compute Test Trends in The Chiplet Era

www.testconx.org

Chiplets & mmWave

HPC Device Testing Today

- Large Reticle limited (800mm²) or wafer-scale devices
 - Power Distribution Network (PDN) 500-1,200 Amp core power
 - 100's to >80K Machine Learning (ML) / Graphics Processing Unit (GPU) / Compute cores
 - Device, fixture safety and protection are critical
- HSIO physical layer testing
 - Tera-bytes of I/O bandwidth for device workloads
 - 32-64 Gbps PCIe5/6
 - 40-120 Gbps USB4/V2
 - 112-224 Gbps PAM4/6
 - 1 to >512 lanes
- HPC data sets of 256 GByte for a single device
 - Long Vector memory loads
 - Compression, Pooling and Memory sharing
- Yield learning requirement for Zero overhead datalogging
- Test methodologies addressing Silent Data Corruption (SDC)

High Performance Compute Test Trends in The Chiplet Era

www.testconx.org

TestConX 2024

Chiplets & mmWave

TestConX Workshop

www.testconx.org

March 3-6, 2024

TestConX 2024

Chiplets & mmWave

TestConX 2024

Chiplets & mmWave

TestConX 2024

Chiplets & mmWave

TestConX 2024

Chiplets & mmWave

	Repla	ay Design to Test		
Verilog Testbench Synth.v ATE.v Virtual Test 0 X 1 X 0 X SSN/DDR	Input Simulat & DUT Verilog M	or Output Output WGL/STIL/EVC D PASS/FAIL Simulation From Simulation	Output Prog ATE Rules Check & Model Applied	FE ram/Patterns 0 X 1 X 0 X 1 X 1 X Z L Z H
Z L Z H Z L Z H	Virt	tual Test ATE.v File Input to Re-simulate ATE.v (Verilog Test Bench) SSN w/SDR/DDR Annotations PVT Variables Verilog ATE Datalogger	Verified ATE Com	Z L Z H pliant
ATE Transactions Virtual Test 93K d Test	s with encoded ConX [™]	High Performance Compute Test Trends in The Ch	iplet Era	8 8 ANNIVERSARY

TestConX 2024

Chiplets & mmWave

Chiplets & mmWave

Protocols in Semiconductor Test

RT	1971	2-wire 9	921,600 bps
l	1980	4-wire 1	0 Mbps
,	1982	2-wire 3	8.4 Mbps
N	1986	2-wire 5	5 Mbps
٨G	1990	5-wire 2	25 Mbps
В	1995	2-wire 1	00 Kbps
10	1999	2-wire 2	2.5 Mbps
' D	2003	2-wire 3	32 Mbps
B3.2	2017	2-wire 1	0 Gbps
le4	2017	4-wire 1	6 Gbps
le5	2019	4-wire 3	32 Gbps
le6	2021	4-wire 6	64 Gbps (32 GT/s – PAM4)
sst(ConX	Higl	h Performance Compute Test Trends in The Chiplet Era
	RT N AG B IO 7D B3.2 le4 le5 le6	RT 1971 1980 1982 N 1986 AG 1990 B 1995 IO 1999 D 2003 B3.2 2017 Ie5 2019 Ie6 2021	RT 1971 2-wire 9 1980 4-wire 1 1982 2-wire 9 N 1986 2-wire 9 N 1986 2-wire 9 AG 1990 5-wire 9 AG 1990 5-wire 9 B 1995 2-wire 9 IO 1999 2-wire 9 IO 1999 2-wire 9 IO 1999 2-wire 9 IO 2003 2-wire 9 IA 2017 2-wire 9 IA 2017 4-wire 9 IA 2017 4-wire 9 IA 2021 4-wire 9

www.testconx.org

TestConX 2024

Chiplets & mmWave

Chiplets & mmWave

Test Access (UCle-enabled) Chiplet Logic

SCAN volume examples:

- Mobile device (i.E. Cell phone processor): 8 GByte
- High performance compute device: 72 ... 128 GByte
- High-end GPU / AI device: 256 GByte

Why so much test data ?

- Test pattern volume grows with transistor count
- New fault models for latest processes (i.E. Cellaware)
- More stringent DPPM requirements -> more tests

Needs high throughput in production test:

- Wide bus with many pins at moderate speed (Mbits/sec)
- Small bus with few pins at high speed (Gbits/sec)

Example: 64 Gbyte on 8-bit bus @ 4 GBit/s = 16 sec test time

High Performance Compute Test Trends in The Chiplet Era

www.testconx.org

Chiplets & mmWave

UCle-S as Test Port for Chiplets

Optional UCIe-S Test Port (8 or 16 bit wide)

	m1rxcksb		m1rxdatasb		vccaon
m1txdatasb		m1txcksb		vccaon	
	vccio		vccio		vccio
VSS		VSS		VSS	
	m2rxdata6		m2rxdata8		VSS
m2rxdata4		m2rxckp		m2rxdata10	
	VSS		VSS		VSS
m2rxdata5		m2rxckn		m2rxdata11	
	m2rxdata7		m2rxdata9		VSS
VSS		VSS	•	VSS	
	m2rxdata2		m2rxdata12		VSS
m2rxdata0		m2rxtrk		m2rxdata14	
	VSS		VSS		VSS
m2rxdata1		m2rxvld		m2rxdata15	
	m2rxdata3		m2rxdata13		vccio
vccio		vccio		vccio	
	VSS		VSS		vccio
vccio		m1txdata7		m1txdata9	
	m1txdata5		m1txckn		m1txdata1
VSS		VSS		VSS	-
	m1txdata4		m1txckp		m1txdata1
VSS		m1txdata6		m1txdata8	
	VSS		VSS		VSS
vccio		m1txdata3		m1txdata13	
	m1txdata1		m1txvld		m1txdata1
vccio		VSS		VSS	
	m1txdata0		m1txtrk		m1txdata1
VSS		m1txdata2		m1txdata12	

lest**ConX**

Bandwidth considerations

- Current trend for SCAN access is to use scan bus schemes which connect to ATE at 400...800 Mbit/sec
- Time-multiplexed, packetized scan data transfer
- Easy to scale up in speed into the Gbit/sec range
- Access through UCIe provides very high BW for SCAN:

	4 I/Os	8 I/Os	16 I/Os
4 Gbit/sec	16 Gbit/sec	32 Gbit/sec	64 Gbit/sec
8 Gbit/sec	32 Gbit/sec	64 Gbit/sec	128 Gbit/sec
12 Gbit/sec	48 Gbit/sec	96 Gbit/sec	192 Gbit/sec
16 Gbit/sec	64 Gbit/sec	128 Gbit/sec	256 Gbit/sec

Massive bandwidth for (scan) test data transfer!

High Performance Compute Test Trends in The Chiplet Era

www.testconx.org

Chiplets & mmWave

Package Test Through Functional I/F or DFT

I/O Die	Compute Die	Memory			
Die -1	Die -0	Die -2			
	Fanout interposer (e.g. FOCo5-B)				
Package Substrate					
1					
PCI>>		ATE			

I/O Die with HSIO I/F (i.E. PCIe) connects to ATE Test data travels to other chiplets through UCIe

- Needs IP for test through functional I/F
- Needs protocol card in ATE (i.E. Link Scale)

Test Port available on package Test port forwarded to neighbor chiplets

- Needs test port routing in addition to UCIe
- Works with standard digital tester channels

EXPRESS

High Performance Compute Test Trends in The Chiplet Era

www.testconx.org

Chiplets & mmWave

PI High Power Simulation

- PI-SI S/W
- ADS, HyperLynx, Sigrity
- DC Drop Analysis
 - Excessive Voltage Drop
 - Excessive Current Density
- AC Analysis
 - Analysis including layout parasitics
 - Vias (RL), resistive paths, board capacitance
- PDN Analysis and optimization
- Temperature simulation profiling

Test**ConX**®

Chiplets & mmWave

TestConX 2024

Fixture Protection Strategies

- Voltage and Current Profiling Test Flows
- Fast current clamps XPS256/Next Gen HPC supplies
- DVS/HVS lower current pre-tests
- Higher Current Carrying Capability (CCC) probes
- Engineered power and signal pogo pins on FT sockets
- Thermal pre-triggering for high power events
- Develop overcurrent and probe burn Best Known Methods (BKM)

High Performance Compute Test Trends in The Chiplet Era

www.testconx.org

Chiplets & mmWave

Wafer Sort Power Management

- Probe burn on ganged rails
 - Next-gen probes for higher CCC
 - Metallized Guide Plates
 - Fast Clamping Supplies (<35 μS)
 - Active Temperature Control (ATC) w/pre-triggering from tester
- Design PDN for maximum active current and wattage
 - HPC devices can have >1 KW for single location
 - Memory testing on wafer approaching 4 KW for entire chuck
- Multi-Zonal thermal chuck temperature mapping and cooling
 - TC or RTD calibration wafer
 - Variable Coolant flow
 - Nonconsecutive die stepping to minimize D2D heat leakage

High Performance Compute Test Trends in The Chiplet Era

Metallized Guide Plates

www.testconx.org

TestConX 2024

Chiplets & mmWave

TestConX 2024

Chiplets & mmWave

Summary

- High-Bandwidth test access required for compute chiplets at all test insertions
- Device data volumes increasing with Chiplet based HPC designs
 - UCIe-S as test phy >= 4 Gbps per lane (up to x16) Wafer/mid-bond
 - SSN SDR/DDR SCAN test access Wafer/package
 - HSAT SCAN fabric testing Wafer/package
- Shift left requires access controlled through:
 - JTAG, I2C, GPIO, IEEE1838/1687, Bunch of Wires (BOW), etc
 - UCIe-S test port (SCAN/FUNCTIONAL/DEBUG)
 - UCIe sideband (800 MHz) for lower bandwidth interfaces
- Accommodate new SCAN BUS schemes for more parallel chiplet/die test
- Software based functional/scan test at engineering & HVM
- HVM High Power Delivery and Thermal Management
- UCIe 1.1 ESD spec: 30V charged-device model (CDM)
 - ESD Class 0Z handling; CDM going to 5V then 3V

High Performance Compute Test Trends in The Chiplet Era

www.testconx.org

TestConX 2024

Chiplets & mmWave

References

- SI/PI technical information site
 - https://www.signalintegrityjournal.com/
- UCIe Universal Chiplet Interconnect Express
 - https://www.uciexpress.org/
- Liquid Immersion Cooling
 - https://www.boydcorp.com/thermal/two-phase-cooling/immersion-cooling.html
- IEEE Spectrum Semiconductors
 - https://spectrum.ieee.org/topic/semiconductors/
- Advantest Voice 2023 Papers
- 13 FA- Optimized and Improved ATE Loadboard Design with EXA Scale Stripe Configuration
- 37 HPD Wafer-Level Stress: Current Flow Adaptive Control During Voltage Stress on an AI/HPC Device
- 65 TM HVM Test of UCIE-Enabled Chiplets for 2.5D and 3D Devices: The Case for a Dedicated Test Port
- 126 TM Utilizing DC Scale XPS256's Background Profiling Capabilities as an Effective Safety Measure in Production and Debug Tool in Engineering
- Advantest Voice 2021 Paper
 - 161-TM-V93000 HSIO Loopback The Challenges and Obstacles of Testing 112 Gbps

High Performance Compute Test Trends in The Chiplet Era

www.testconx.org

TestConX 2024

Chiplets & mmWave

Acknowledgements

- Dave Armstrong, Advantest
- Michael Braun, Advantest
- Ken Butler, Advantest
- Dan Hutcheson, TechInsights
- Rich Lathrop, Advantest
- Yervant Zorian, Synopsys
- IEEE-EPS HIR-WG
- UCle-Working Groups

High Performance Compute Test Trends in The Chiplet Era

www.testconx.org

COPYRIGHT NOTICE

The presentation(s) / poster(s) in this publication comprise the Proceedings of the TestConX 2024 workshop. The content reflects the opinion of the authors and their respective companies. They are reproduced here as they were presented at the TestConX 2024 workshop. This version of the presentation or poster may differ from the version that was distributed at or prior to the TestConX 2024 workshop.

The inclusion of the presentations/posters in this publication does not constitute an endorsement by TestConX or the workshop's sponsors. There is NO copyright protection claimed on the presentation/poster content by TestConX. However, each presentation / poster is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

"TestConX", the TestConX logo, the TestConX China logo, and the TestConX Korea logo are trademarks of TestConX. All rights reserved.