TWENTY THIRD ANNUAL

May 1 - 4, 2022

TestConX

DoubleTree by Hilton Mesa, Arizona ACCINE

© 2022 TestConX– Image: f11-photographer / iStock

Contact Technology

Bridging The Gap, Part 2

Dan Hwang - HiCon Co., Ltd. Noel Del Rio - NXP Semiconductors Paul Schubring – HighRel

Mesa, Arizona • May 1-4, 2022

HighRel, Inc.

TestConX Workshop

www.testconx.org

TestConX 2022

Contents

- Technology Drivers & Tooling Challenges
- Bridging The Gap, Part 1 Review
- The "HSRR" Solution Building a Better Bridge
- Technology Comparison & Test Data
- Full System Measurement Results
- Conclusions & Next Steps

TestConX 2022

Technology Drivers and Tooling Challenges

Device Trends¹

Technology treadmill never slows

- Mining, AI, Streaming, Self-Driving, Mobility, Smart Home, Health, etc...
- Higher data rates
- More transistors / More cores
- Higher power
- Both larger and smaller packages
- Finer pitch / Higher pin counts

TestConX 2022

The Test Gap for Fine Pitch / High Speed

Spring Probes:

- Typically, machined pin
- High mechanical cycle life
- Wide temperature range
- Good electrical performance •
- Machined pin cost is high • and rapidly increases for very fine pitch & high-speed applications, especially as pin height is less than 3mm

Elastomer Contacts:

- Excellent electrical performance •
- Typically used for validation / characterization applications
- Lower life cycle expectancy • compared to spring probes
- Lower temperature range • compared to spring pins
- Free height is generally 1mm maximum

Solution Goal: A cost-effective solution contact that provides the electrical capabilities of elastomer contacts and mechanical benefits of spring probes, especially in 1-2mm test height applications Test**ConX**®

Bridging the Gap, Part 2

www.testconx.org

Elastomer Contact

Contact Technology

TestConX 2022

Bridging the Gap, Part 1 – The 'HyBrid' Solution

- HiCon has developed an entire product family devoted to addressing 'The Gap'
- HiCon's HyBrid Contact was the 1st product developed and was introduced at TestConX 202
 - Initially developed as a way to break through < 0.3mm pitch barrier with a high-performance, cost- effective solution
 - Available at 0.2mm minimum pitch
- The HyBrid contact system combines a mechanical pin with traditional elastomer
 - Contact system benefits from excellent electrical performance
 - Mechanical performance that meets long life and
 - tri-temp temperature range requirements

Bridging the Gap, Part 2

1mm 1521-pin HyBrid Socket

2022

TestConX Workshop

www.testconx.org

5

TestConX 2022

Bridging the Gap, Part 2: HSRR

0.65mm Pitch

0.3mm

Pitch

1mm Pitch HSRR (High-Speed Round/Round Tip Pin):

- Shortest Spring Probe for High-Speed Test •
- High Volume, Stamped Pin \bullet
- Wide temperature range: -50°C to 150°C**
- Long Mechanical Life •
- Low and Consistent Contact Resistance & excellent S-Parameter performance
- Available in 0.5mm to 1.2mm free heights •

- -				
Length	1.2mm	1.0mm	0.8mm	0.6mm
Model		KKKKKKE WWWE		

Diameter 0.38mm		0.32mm	0.27mm	0.20mm	0.155mm	
Minimum Pitch	0.6mm	0.5mm pitch	0.4mm pitch	0.3mm pitch	0.25mm pitch	

** Up to 180°C Solutions Available

Bridging the Gap, Part 2

www.testconx.org

0.4mm

Ditch

HSRR Benefits:

Fully stamped solution

Greater temperature

Test height as low as

• High current

0.36mm

available

Same electrical performance

Greater mechanical stroke

range (150°C and higher)

Increased mechanical life

1-2mm test height solutions

TestConX 2022

High Speed Interconnect Comparison

	HiCon HyBrid pin (HB)	HiCon Stamped Pin (HSRR)			
Image					
DC Resistance	≤ 80mΩ	≤ 80mΩ			
Force	<u>≤</u> 40g (@0.8p)	Variable (@0.8p) (Available in 16~26g)			
Band width (@-1dB)	30~40 GHz	30~40 GHz			
Pitch Capability	>1mm ~ 0.20mm	> 1mm ~ 0.25mm			
Mechanical Cycles	~ 100K	≥ 100K			
Temperature Range	-35°~125℃	-50°~150°C			
C.C.C	> 3A	> 3A			
Key Features	Short (1.2mm↓). Stamped Pin + Powder	Short (1.2mm↓). Fully stamped (Robust & Economical)			

Data based on 0.8mm pitch

Bridging the Gap, Part 2

2022

TestConX 2022

HSRR Validation Data

DEF(mm)	Force(gf)	Resistance(m Ω)
0.25	20.0gf/pin	34.3mΩ/pin
0.30	21.7gf/pin	34.3mΩ/pin

TestConX Workshop

Test**ConX**

www.testconx.org

8

TestConX 2022

Contact Technology

TestConX Workshop

TestConX 2022

Contact Technology

TestConX Workshop

TestConX 2022

Contact Technology

TestConX Workshop

www.testconx.org

TestConX 2022

HSRR Measurement Set-up

- 1. VNA DC to 30Ghz @ 3Mhz resolution or steps
- 2. HiCon LX2 Test Socket
- 3. 1mm pitch / 1517BGA Surrogate Package
- 4. Differential Measurements
- 5. Eight Serdes Lanes Measured (RX2, TX2, RX3, TX3)
- Room Temperature using 70Ghz VNA
- 7. No LX2 functional test
- 8. HyperLynx simulator on one lane, PRBS31 at 25 data rate

TestConX 2022

Contact Technology

TX3 Lane Socket Measurement Results

TestConX Workshop

TestConX 2022

Contact Technology

TestConX Workshop

www.testconx.org

TestConX Workshop

TestConX 2022

www.testconx.org

TestConX 2022

Contact Technology

TestConX Workshop

TestConX 2022

Contact Technology

	And in the local division of the local divis			-			
	~		100 C				
	and the second se					1	
							<
1							
0.0001		1				1	
1e-00						_	and the second second second
1e-12							
1e-16							
1e-20							
		Simulation results					
Simulation date	ulation date Probe name Highest BER	Highest PED	Pass/fail eye	Eye mas	k margin	Eye op	ening
		mask	Time, UI	Voltage, V	Time, UI	Voltage, V	
Tue Dec 28 12:14:38 2021	R10.1 (at pin)/R10.2 (at pin)	4.58456e-14	Passed	0.00861806	0.00866398	0.480633	0.30245
Tue Dec 28 12:16:03 2021	R10.1 (at pin)/R10.2 (at pin)	3.99695e-13	Passed	0.00255571	0.00450036	0.469366	0.303776
Tue Dec 28 14:48:34 2021	R10.1 (at pin)/R10.2 (at pin)	1.03553e-14	Passed	0.0123465	0.0112925	0.48603	0.309753
Tue Dec 28 18:32:51 2021	R10.1 (at pin)/R10.2 (at pin)	0	Passed	0.0773532	0.0846539	0.5744	0.52413

HyBrid Contact Pin Measurement

> Significant improvement observed with 8 taps Preemphasis enabled

Bridging the Gap, Part 2

TestConX Workshop

TestConX 2022

Summary & Conclusions

	HiCon Hs Product Solution Family
DC Resistance	≤ 80mΩ
Force	<u><</u> 40g (@0.8p)
Band width (@-1dB)	> 40 GHz
Pitch Capability	0.25mm minimum
Mechanical Cycles	> 100K
Temperature Range	-35°~150℃ (Up to 180°C)
Current Carrying Capacity	> 3A
Test Height Range	0.36mm – 1.7mm
Key Features	Fully Stamped / Scalable and Economic Solution

- Spring Pins and Elastomer Contact Solutions offer seemingly mutually exclusive benefits suitable for different applications
- HiCon's High-speed (Hs) product family combines the best attributes of both into a single solution
- The HSRR contact builds upon the HyBrid contact by increasing the pin stroke, temperature range, and mechanical life cycles
- Fully stamped pin is a cost-effective solution for applications as low as 0.25mm pitch
- HSRR provides consistent quality and C-res

TestConX 2022

Contact Technology

TestConX Workshop

www.testconx.org

With Thanks to Our Sponsors!

With Thanks to Our Sponsors!

COPYRIGHT NOTICE

The presentation(s) / poster(s) in this publication comprise the Proceedings of the TestConX 2022 workshop. The content reflects the opinion of the authors and their respective companies. They are reproduced here as they were presented at the TestConX 2022 workshop. This version of the presentation or poster may differ from the version that was distributed at or prior to the TestConX 2022 workshop.

The inclusion of the presentations/posters in this publication does not constitute an endorsement by TestConX or the workshop's sponsors. There is NO copyright protection claimed on the presentation/poster content by TestConX. However, each presentation / poster is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

"TestConX", the TestConX logo, and the TestConX China logo are trademarks of TestConX. All rights reserved.