BiTS 2017

Contact Frequency - Contact Technology - 2 of 2

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

March 5-8, 2017

Copyright Notice

The presentation(s)/poster(s) in this publication comprise the Proceedings of the 2017 BiTS Workshop. The content reflects the opinion of the authors and their respective companies. They are reproduced here as they were presented at the 2017 BiTS Workshop. This version of the presentation or poster may differ from the version that was distributed in hardcopy & softcopy form at the 2017 BiTS Workshop. The inclusion of the presentations/posters in this publication does not constitute an endorsement by BiTS Workshop or the workshop's sponsors.

There is NO copyright protection claimed on the presentation/poster content by BiTS Workshop. However, each presentation/poster is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

The BiTS logo and 'Burn-in & Test Strategies Workshop' are trademarks of BiTS Workshop. All rights reserved.

Contact Frequency - Contact Technology - 2 of 2

Contact Frequency - Contact Technology - 2 of 2

MRC (MEMS Rubber Contact) Socket Bump Particle Structure & Performance Analysis

Justin Yun Bo Hyun Kim Dave Oh

BiTS Workshop March 5 - 8, 2017

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

March 5-8, 2017

BiTS 2017

Contact Frequency - Contact Technology - 2 of 2

Contact Frequency - Contact Technology - 2 of 2

MRC Socket Background

- MEMS particle is applied to bump for good contact with balls of Package
 - ✓ Abrasion, Deflection and Tin build-up are improved

6

Burn-in & Test Strategies Workshop

BiTS 2017

Contact Frequency - Contact Technology - 2 of 2

MRC Socket Background

MRC vs Conventional Rubber Socket Lifespan MRC : Consistent Cres. over 100K Touchdown

- Why is MRC socket performance better than conventional rubber socket?
 - Contact reliability is improved by electromechanical docking of MEMS particles.

MRC (MEMS Rubber Contact) Socket Bump Particle Structure & Performance Analysis

Burn-in & Test Strategies Workshop

BiTS 2017

Contact Frequency - Contact Technology - 2 of 2

Alternative particle shape increased contact area and improved docking
Improvement in electrical performance (Resistance, C.C.C, Lifespan)

MRC (MEMS Rubber Contact) Socket Bump Particle Structure & Performance Analysis

Contact Frequency - Contact Technology - 2 of 2

Investigation

What kind of particle on each layer is good for durability ?
✓ Each bump has 3 layers – Top, Body, Bottom

Burn-in & Test Strategies Workshop

Contact Frequency - Contact Technology - 2 of 2

Burn-in & Test Strategies Workshop

Contact Frequency - Contact Technology - 2 of 2

Investigation

Characteristic comparison for each particle shape

	PARTICLE	HARDNESS	ADHESION with SILICONE	CONSISTENT CONTACT	COST				
	251.0 X1: 460 FE0TRS	0	0	Ο	X				
	25LU X1.469 TEM PEGTAS	X	0	0	Ο				
		0	X	Ο	Ο				
	<0 : GOOD, X : BAD>								
Strategies Worksh	Trategies Workshop Rubber Contact) Socket Bump Particle Structure & Performance Analysis								

Burn-in & Test Strategies Workshop

BiTS 2017

Contact Frequency - Contact Technology - 2 of 2

Investigation

What is the requirement & best choice for each layers?

LAYERS	CONTACT OBJECT	HARDNESS	ADHESION with SILICONE	CONSISTENT CONTACT	BEST CHOICE
ТОР	Ball	25		S.	25.12 X 1.432 FETTS
BODY	Each Particle	N/A	N/A		
воттом	PCB Gold Pad	N/A		N/A	2510 1.1480 TEM FEDTAS
MRC (MEMS Rubber Contact) Socket Bump Particle Structure & Performance Analysis 12					

Burn-in & Test Strategies Workshop

BiTS 2017

Contact Frequency - Contact Technology - 2 of 2

Burn-in & Test Strategies Workshop

BiTS 2017

Contact Frequency - Contact Technology - 2 of 2

Comparison

Random-shape Powder vs. Sphere-shape Particle

MRC (MEMS Rubber Contact) Socket Bump Particle Structure & Performance Analysis

Burn-in & Test Strategies Workshop

BiTS 2017

Contact Frequency - Contact Technology - 2 of 2

Burn-in & Test Strategies Workshop

Contact Frequency - Contact Technology - 2 of 2

Evaluation

Resistance / Lifespan / Current Carrying Cpacity

- ✓ Tester : TSE IT-490
- ✓ Temp : 23°C
- ✓ Probe Size : ø0.19mm
- ✓ Probe Material : BeCu + Plating Au
- ✓ Lifespan Stroke : 100um
- ✓ Lifespan : Touch Down 300K
- ✓ C.C.C Contact stroke : stroke @Force 10g
- ✓ DC Power Supply 3306D (Max. 6A)

MRC (MEMS Rubber Contact) Socket Bump Particle Structure & Performance Analysis

Burn-in & Test Strategies Workshop

BiTS 2017

Contact Frequency - Contact Technology - 2 of 2

Evaluation – Resistance

Burn-in & Test Strategies Workshop

BiTS 2017

Contact Frequency - Contact Technology - 2 of 2

Evaluation – Resistance

Standard Deviation (Contact Resistance)

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

18

BiTS 2017

Contact Frequency - Contact Technology - 2 of 2

Burn-in & Test Strategies Workshop

BiTS 2017

Contact Frequency - Contact Technology - 2 of 2

Evaluation – Lifespan (Whole Bump)

- Lifespan Evaluation Condition
- ✓ Tester : TSE IT-490
- ✓ Temp : 23°C
- ✓ Dummy Device Ball Size : ø0.23mm
- ✓ Dummy Device Ball Material : (Pb Free) Sn
- ✓ Stroke : 100um
- ✓ Lifespan : Resistance Change Point
- ✓ Dummy Package was changed after every 10K touchdown.

MRC (MEMS Rubber Contact) Socket Bump Particle Structure & Performance Analysis

Burn-in & Test Strategies Workshop

BiTS 2017

Contact Frequency - Contact Technology - 2 of 2

Burn-in & Test Strategies Workshop

Contact Frequency - Contact Technology - 2 of 2

	Random-shape Powder	Sphere-shape Particle		
Min.	1.42A	1.82A		
Max.	2.49A	2.33A		
Average	1.78A	1.95A		
STD	0.39	0.19		

Burn-in & Test Strategies Workshop

Contact Frequency - Contact Technology - 2 of 2

Evaluation – Customer Production Site

Package Specification

- ✓ Time Controller 112BGA 0.65Pitch / Max Speed 3Gbps
- ✓ Facility : V93K Handler (Seiko Epson NS7080)

Lifespan

- ✓ Test Start Date June 10th, 2016
- ✓ Socket with Random-shape Powder : Test Ended after 78.5K Touch Down
- ✓ Socket with Sphere-shape Particle : 175.5K Tested since Oct. 14th
- ✓ Accumulated Average Yield was Increased 3~4% up to 78.5K

	SITE	IN QTY	Ουτ φτγ	FAIL QTY	PASS RATE	Ος ΟΙΑ	OS RATE
Multi-shape	S1	78531	67304	11227	85.704	198	0.253
Powder	S2	78561	69319	9242	88.236	80	0.102
Sphere-shape	S 3	175500	164135	11365	93.524	56	0.032
Particle	S 4	175620	163349	12271	93.013	42	0.024
Arest Strategies Workshop Contact) Socket Bump Particle Structure & Performance Analysis							

23

Contact Frequency - Contact Technology - 2 of 2

BiTS 2017

Burn-in & Test Strategies Workshop

Contact Frequency - Contact Technology - 2 of 2

Analysis

Continuous Contact Point

- ✓ S-shaped particles provide geometrically uniform distribution of contact force
- ✓ S-shaped particles minimize gaps and provide more consistent contact force

Burn-in & Test Strategies Workshop

Contact Frequency - Contact Technology - 2 of 2

Summary

- Short Term Resistance
 - Sphere-shape particles provide stable contact resistance compared to Random-shape powder

Lifespan (Resistance Increase by Touchdown)

 Sphere-shape particles improve bump body durability compared to Random-shape powder

MRC (MEMS Rubber Contact) Socket Bump Particle Structure & Performance Analysis

Burn-in & Test Strategies Workshop

Contact Frequency - Contact Technology - 2 of 2

Summary

Deflection

 Sphere-shape particles reduces deflection compared to Random-shape powder

• C.C.C

 Sphere-shaped particles improve current capacity compared to Random-shape powder

MRC (MEMS Rubber Contact) Socket Bump Particle Structure & Performance Analysis

Burn-in & Test Strategies Workshop

Contact Frequency - Contact Technology - 2 of 2

Conclusion

Particle Shape

✓ Particle conductivity is improved by altering the particle shape

Sphere-shape Particle

- Controlled sphere-shaped particles creates a repeatable and robust electromechanical contact
- Utilization of Sphere-shape particles in the Bump Body prevents silicon damage and contact pressure concentration which improves the long-term mechanical performance of MRC sockets
 - Durability improved
 - Contact point stability improved
 - Deflection decreased

MRC (MEMS Rubber Contact) Socket Bump Particle Structure & Performance Analysis

28